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In Monte Carlo simulations of light transport in tissues, a grid system is set up to score physical
quantities. This study of cylindrically symmetrical problems found that the optimized radial and
angular positions for the averaged physical quantities in each grid element are off-center. The error
of the extrapolated physical quantities at the light-incidence point using the centered radial posi-

tions is up to 14.3%.

Since Wilson and Adam' first introduced Monte Carlo simu-
lations into the field of laser-tissue interactions, the method
has been widely used to simulate photon transport in
tissues.> ! In the simulations, laser light is injected into the
tissue (turbid medium) and is traced statistically. A grid sys-
tem is set up to score physical quantities, including reflec-
tance, transmittance, or absorption. In cylindrically sym-
metrical problems, e.g., when a laser beam is perpendicular
to a multilayered tissue slab, a grid system is usually estab-
lished to score light in tlie radial () domain, where the radius
is the distance between the observation point and the laser-
incidence point on the tissue slab. Usually, the center of each
r-grid element is used for the average physical quantity in
the grid element. This communication first proves that the
optimized-r positions are off-center in each r-grid element
and then briefly discusses the angle (a), depth (z), and time
(t) domains.

The grid separation in the » domain is denoted by Ar, and
the total number of grid elements is N. The index to each
grid element is denoted by n, where 0<<n<N— 1. The center
of each grid element is denoted by r,,,

r,=(n+0.5)Ar. (1)

Monte Carlo simulations approximate the average of the
physical quantity Y(r) in each grid element, where Y(r) can
be diffuse reflectance, diffuse transmittance, or internal fiu-
ence at a particular z value. Although Y(r) is not analytically
known, which is why we perform numerical simulations, the
average of Y(r) in the nth-grid element can be expressed
mathematically by =

rptAr/2
(Y(r))= f Y(r)2mr dr, )

21rr,,Ar ra—Ar/2

where the term 277, Ar is the area of the grid element in the
form of a circle for n=0, or of an annulus for n>0.

If Y(r) in each grid element is differentiable and is ap-
proximated linearly, there exists a best point r, to satisfy

(Y(r))=Y(ry). (3)

Therefore, the simulated average should be assigned to r,,.
Y(r) in the nth-grid element can be approximated by a
Taylor series expanded to the first order about r,,

Y(r)=Y(ry)+(r—rp)Y'(rp). 4)
Substituting Eq. (4) into Eq. (2), i.e.,
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1 rotAr/2
<Y(r)>=27‘rr Arf " [Y(rp)+(r—rp)Y'(rp)]

rp,—Ar
X2arr dr, (5)
and completing the integration yields

Ar)?
rpt———rpl.

(Y(r)=Y(r,)+Y'(rp) 127

()

It we set the term [r,+(Ar)%/12r,—r,] in Eq. (6) to 0 and
solve for r}, , Eq. (6) becomes Eq. (3) and we thus obtain

Ar
rb=rn+—12—rn Ar, (7)
or
= 0 ! A 8)
ry=|(n+ .5)+m r.

Therefore, the optimized-r positions for n=0,1,2,34, ...
are (2/3)Ar, 1.556Ar, 2.533Ar, 3.524Ar, 4.519Ar, ..., corre-
spondingly. The optimized-r position deviates from the cen-
ter of each grid element as a result of the 277 factor in the
integration in Eq. (2). The smaller the index to the grid box,
the larger is the deviation. As the index n becomes large, the
optimized-r position approaches the grid-element center. For
n=0, the difference of the center from the optimized-r po-
sition is Ar/6 or 25%.

Linear interpolation is usually used to estimate Y(r) in
between grid points and extrapolation is used to estimate
Y(r=0). Y(r) that is estimated using the centers of grid
elements will be different from the more accurate Y(r) that
is estimated using the optimized-r positions, and the differ-
ence is the greatest for Y(r=0), as illustrated in Fig. 1. The
average simulation results for Y(r) in grid elements n=0
and 1 are denoted by Y, and Y, respectively. If we use the
centers of the grid elements, Y(r=0) is

Y (0)=Yy— (Yo=Y )(Ar/2)/(Ar/2—3Ar/2)
=Y+ (Yo=Y /2. )
If we use the optimized-r positions, Y(r=0) is
Y (0)=Yo—(Yo—Y)(2Ar/3)/(2Ar/3—14Ar/9)
=Y +3(Yo—Y)/4 . (10)

The relative error between Y, (0) and Y _(0) is
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FiG. 1. An illustration estimating the physical quantity Y(r) at r=0. Y, and
Y denote the simulated average physical quantity in elements n=0 and 1,
respectively. The grid separation is Ar. ¥ ,(0) and ¥, (0) are the extrapolated
estimations of Y(r=0) using the optimized- and centered-r positions, re-
spectively.

[Yp(0)=Y(0)]/Y(0)=(1=Y,/Y)/(7— 3Y,/Yy)=<1/7.

(11)
The relative error varies with the ratio between Y, and Y,
and approaches the maximum 1/7 (14.3%), when Y /Y, ap-
proaches 0. For example, if Y,/Y, is 0.1, the relative error is
about 13%.

Using the centers of grid elements also leads to errors
when convolution is used to calculate the light distribution
for laser beams of a finite width. An impulse response for an
infinitely narrow beam that is perpendicularly incident upon
a multilayered tissue slab can be first calculated using Monte
Carlo simulations. The response of the beam with a finite
width can then be computed through convolution of the im-
pulse response over the beam profile.” (Both our Monte
Carlo simulation and convolution programs are in the public
domain and can be obtained by contacting the authors of this
paper.) Figure 2 shows the impulse diffuse reflectance for an
infinitely narrow laser beam of 1 J energy and the diffuse
reflectance of a flat laser beam of 0.01 cm radius and 1 J
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FiG. 2. Diffuse reflectance of a laser beam that is perpendicularly incident
upon an infinitely thick tissue slab in air. The optical properties of the tissue
are refractive index=1.37, absorption coefficient=1.0 cm™!, scattering
coefficient=100.0 cm ™', and anisotropy=0.9. The circles show the Monte
Carlo-simulated impulse response of an infinitely narrow laser beam of 1 J
energy at optimized-r positions, where the grid separation in the radial di-
rection is 0.01 cm and the number of grid elements is 100 during the Monte
Carlo simulation. The pluses and crosses show the diffuse reflectances in
response to a flat laser beam of 1 J energy and 0.01 cm radius convolved
using the optimized- and centered-r positions, respectively.
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energy that is perpendicularly incident upon an infinitely
thick tissue slab. The convolved diffuse reflectances com-
puted using the optimized- and centered-r positions are dif-
ferent near the laser source and merge gradually far from the
source. The difference at r=0.005 cm is 9.5%, with the cen-
tered approach underestimating the diffuse reflectance. Be-
cause this laser beam is narrow compared with the decay
constant of the diffuse reflectance, the convolved diffuse re-
flectance also merges into the impulse diffuse reflectance far
from the laser source. It is also worth noting that the im-
provement of using the optimized-r positions is the greatest
when the beam size is comparable to the size of the grid
elements.

Simulated diffuse reflectance and transmittance can be re-
solved over the exit angle (a) by setting up a grid system in
the & domain. Such simulations mimic goniometric measure-
ments of light scattering.'> The exit angle is defined as the
angle between the light-exiting direction and the normal to
the surface of the tissue slab. The simulated diffuse reflec-
tance or transmittance in each a-grid element is averaged
over the solid angle spanned by the a-grid element. The
averaged quantity Y(a) in the nth-grid element, which can
be either diffuse reflectance or diffuse transmittance, can be
expressed as

a,+Aa,/2
(Y(a))=j Y(a)27 sin(a)da /
a,— A«

/2

a,tAa,/2
f 27 sin(a)da, (12)
a,—Aay/2

where a, and Aa, are the center and width of the grid ele-
ment, respectively, and the denominator gives the solid angle
of the grid element. Since the a grid may not be homoge-
neous, we use Aa, instead of A« for the width of grid ele-
ment n.

Again, if Y(a) in each grid element is differentiable and
approximated linearly, we can similarly prove that there exits
a best point a;, to satisfy (proof not shown)

(Y(@))=Y(ay), (13)

where

(14)

ay=a,+cot(a,) > 5

Aa, (Aa,,)
1— cot| ——1|.

However, the complexity of Eq. (14) will affect its practical
value.

For physical quantities, such as light fluence inside the
tissue, that can be resolved over z or ¢, it can be easily shown
that the best points for the z- and t-grid elements are the
centers of each grid element (proof not shown).

In conclusion, the simulated physical quantities in each
grid element in Monte Carlo modeling should be assigned to
the positions that are centered in the z or ¢ domains but not
centered in the r or & domains. The error of the estimated
physical quantities at r=0, Y(r=0), using the centered-r
positions can be up to 14.3%. Using the optimized positions,
one can use coarser grids to achieve the same accuracy, yet a
smaller statistical variation in Monte Carlo modeling.
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